Topics in Cohomological Studies of Algebraic Varieties Impanga Lecture Notes /

The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory....

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Pragacz, Piotr. (Editor)
Format: SpringerLink eBooks
Language:English
Published: Basel : Birkhäuser Basel, 2005.
Series:Trends in Mathematics
Subjects:
Online Access:http://dx.doi.org/10.1007/b137662
LEADER 03085nam a22004695i 4500
001 978-3-7643-7342-9
003 DE-He213
005 20151204175701.0
007 cr nn 008mamaa
008 100301s2005 sz | s |||| 0|eng d
020 |a 9783764373429  |9 978-3-7643-7342-9 
024 7 |a 10.1007/b137662  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
245 1 0 |a Topics in Cohomological Studies of Algebraic Varieties  |h [electronic resource] :  |b Impanga Lecture Notes /  |c edited by Piotr Pragacz. 
264 1 |a Basel :  |b Birkhäuser Basel,  |c 2005. 
300 |a XXVIII, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Trends in Mathematics 
505 0 |a Characteristic Classes of Singular Varieties -- Lectures on the Geometry of Flag Varieties -- Combinatorial K-theory -- Morse Functions and Cohomology of Homogeneous Spaces -- Integrable Systems and Gromov-Witten Theory -- Multiplying Schubert Classes -- Lectures on Characteristic Classes of Constructible Functions -- Algebraic K-theory of Schemes -- Gromov-Witten Invariants and Quantum Cohomology of Grassmannians. 
520 |a The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebraic Topology. 
700 1 |a Pragacz, Piotr.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764372149 
830 0 |a Trends in Mathematics 
856 4 0 |u http://dx.doi.org/10.1007/b137662 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)